Detoxication of aliphatic epoxides by diol formation and glutathione conjugation.
نویسندگان
چکیده
The Ames procedure with Salmonella typhimurium strain TA100 was used to follow the detoxication by rat liver fractions of two series of aliphatic epoxides. The epoxides employed were 3-chloro-, 3,3-dichloro- and 3,3,3-trichloropropylene oxides and also p-methoxyphenyl-, phenyl- and p-nitrophenylglycidyl ethers. In our procedure with preincubation of the epoxides with rat liver fractions prior to the Ames tests, there was more detoxication of both systems by glutathione conjugation (non-enzymatic and transferase promoted) than by the hydrolase pathways. Non-enzymatic reaction with glutathione was more pronounced for the chloro series than for the glycidyl ethers. An HPLC system was developed which was capable of quantitative measurements of the phenylglycidyl ethers together with their diol and glutathione conjugate products. A comparison of the HPLC and Ames test results indicates that the glutathione transferase reported to be present in Salmonella could be playing a role in detoxication by the Ames test. Diols were measured more readily by HPLC than by use of the Ames test in the microsomal fraction and were detected in the cytosol with the glycidyl ethers while they were not by the Ames procedure. However, all three epoxides were converted to a greater extent to their glutathione conjugates than to their diols. Thus, while literature references question the availability of the glutathione detoxication system for epoxides produced by membrane-bound enzymes, such detoxication would be of primary importance where direct-acting environmental epoxides come into contact with the cytosolic enzymes prior to possible reaction with bionucleophiles.
منابع مشابه
Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons.
Previous studies have identified allelic variants of the human glutathione transferase (GST) Pi gene and showed that the two different encoded proteins with isoleucine (GSTP1-1/I-105) or valine (GSTP1-1/V-105) at position 105, respectively, differ significantly in their catalytic activities with model substrates. Moreover, recent epidemiological studies have demonstrated that individuals differ...
متن کاملCatalytic efficiencies of allelic variants of human glutathione S-transferase P1-1 toward carcinogenic anti-diol epoxides of benzo[c]phenanthrene and benzo[g]chrysene.
Four allelic variants of glutathione (GSH) S-transferase P1-1 (hGSTP1-1) that differ in their structures at amino acid(s) in position(s) 104 and/or 113 are known to exist in human populations. However, the physiological significance of hGSTP1-1 polymorphism is not fully understood. In this communication, we report that the I104,A113 allele of hGSTP1-1, which is most frequent in human population...
متن کاملCatalytic Efficiencies of Allelic Variants of Human Glutathione S-transferase Pl-1 toward Carcinogenic ¿wft'-Diol Epoxides of Benzo[c]phenanthrene and Benzo^Jchrysene1
Four allelic variants of glutathione (GSH) S-transferase Pl-1 (hGSTPl-1) that differ in their structures at amino acid(s) in position(s) 104 and/or 113 are known to exist in human populations. However, the physiological significance of hGSTPl-1 polymorphism is not fully under stood. In this communication, we report that the I104,AII3 alÃ-eleof hGSTPl-1, which is most frequent in human populatio...
متن کاملAssociations between smoking, polymorphisms in polycyclic aromatic hydrocarbon (PAH) metabolism and conjugation genes and PAH-DNA adducts in prostate tumors differ by race.
Polycyclic aromatic hydrocarbon (PAH)-DNA adducts may induce mutations that contribute to carcinogenesis. We evaluated potential associations between smoking and polymorphisms in PAH metabolism [CYP1A1 Ile 462Val, CYP1B1 Ala 119Ser and Leu 432Val, microsomal epoxide hydrolase (mEH) Tyr 113His and His139Arg, CYP3A4 A(-392)G] and conjugation [glutathione S-transferase (GST) M1 null deletion, GSTP...
متن کاملActivation of dihaloalkanes by glutathione conjugation and formation of DNA adducts.
Ethylene dibromide (1,2-dibromoethane, EDB) can be activated to electrophilic species by either oxidative metabolism or conjugation with glutathione. Although conjugation is generally a route of detoxication, in this case it leads to genetic damage. The major DNA adduct has been identified as S-[2-(N7-guanyl)ethyl]glutathione, which is believed to arise via half-mustard and episulfonium ion int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemico-biological interactions
دوره 63 1 شماره
صفحات -
تاریخ انتشار 1987